1. Study suggests farm to school program boosts fruit, veggie intake

    December 6, 2017 by Ashley

    From the University of Florida Institute of Food and Agricultural Sciences press release:

    It’s one thing to offer students fruits and vegetables for school lunch; it’s another for them to actually eat them. Children who attend schools with Farm to School programs eat more fruits and vegetables, new University of Florida research shows.


  2. When vegetables are closer in price to chips, people eat healthier

    November 27, 2017 by Ashley

    From the Drexel University press release:

    When healthier food, like vegetables and dairy products, is pricier compared to unhealthy items, like salty snacks and sugary sweets, Americans are significantly less likely to have a high-quality diet, a new Drexel University study found.

    The research, led by David Kern, PhD, an adjunct faculty member at Drexel’s Dornsife School of Public Health, and Amy Auchincloss, PhD, an associate professor in the school, sought to find out the real effect that price difference has on the quality of diets in the United States.

    “We found that, on average, healthier perishable foods were nearly twice as expensive as unhealthy packaged foods: 60 cents vs. 31 cents per serving, respectively,” said Kern, lead author of the study in the International Journal of Environmental Research and Public Health. “As the gap between neighborhood prices of healthier and unhealthier foods got wider, study participants had lower odds of having a healthier diet.”

    For example, the study found that for every 14 percent increase in the healthy-to-unhealthy price ratio (the standard deviation in this study), the odds of having a healthy diet dropped by 24 percent. This was even after controlling for personal characteristics, like age, sex, income, education and other factors.

    “We are consuming way too many sugary foods like cookies, candies and pastries, and sugary drinks, like soda and fruit drinks,” Auchincloss said. “Nearly 40 percent of U.S. adults are obese and less than 20 percent attain recommendations for fruits and vegetables. Cheap prices of unhealthy foods relative to healthier foods may be contributing to obesity and low-quality diet.”

    To delve into price impacts, Kern and Auchincloss used cross-sectional data from 2,765 participants in the Multi-Ethnic Study of Atherosclerosis (MESA). Participants were recruited from six urban areas in the U.S.: New York, Chicago, St. Paul, Los Angeles, Baltimore and Winston-Salem in North Carolina. Each participant’s diet data was linked to food prices at supermarkets in their neighborhood.

    Grocery prices were broken down into categories of “healthier” and “unhealthy.” Healthier foods included:

    • Dairy products — milk, yogurt and cottage cheese
    • Fruits and vegetables — frozen vegetables and orange juice, since fresh produce prices were not attainable

    Meanwhile, among the unhealthy foods were:

    • Soda
    • Sweets — chocolate candy and cookies
    • Salty snacks — potato chips

    The researchers used the Healthy Eating Index-2010 (HEI-2010), developed by the United States Department of Agriculture, to assess the study participants’ dietary quality.

    “A well-balanced diet of fruits, veggies, whole grains, low-fat milk and lean protein, with a minimal consumption of sodium and sugary foods and drinks — like soda and junk food — would receive an optimal score on the HEI-2010,” Kern said.

    The adverse impact of increasing healthy food prices compared to unhealthy food prices was particularly strong for people in the middle ranges of income/wealth in the study, and those with higher education.

    “We originally expected to find the largest impact among individuals in the lowest wealth/income group. However, given the price gap that we found, healthy food may be too expensive for the lowest socioeconomic status group even at its most affordable,” Kern said. “So the impact of the price ratio is weaker for this group.”

    A lot of research in public health has been devoted to changing food environments for the purpose of encouraging healthier eating. This is one of the few studies that takes a hard look at prices between foods, compares them, and tries to link them back to their dietary implications.

    Kern and Auchincloss believe more work needs to be done in this arena. In fact, they recently did work (published in Preventive Medicine) that found the price ratio of healthy-to-unhealthy food had a significant association with insulin resistance.

    “Prospective studies that examine interventions effecting food prices — such as taxes on soda and junk food or subsidies for fruits and vegetables — would be vital to understand how food prices influence purchasing decisions and subsequent diet quality,” Kern concluded. “Improving diet quality in the U.S., especially for the most vulnerable populations, is a large public health concern and future research could help address this issue.”


  3. Study suggests consuming nuts strengthens brainwave function

    November 25, 2017 by Ashley

    From the Loma Linda University Adventist Health Sciences Center press release:

    A new study by researchers at Loma Linda University Health has found that eating nuts on a regular basis strengthens brainwave frequencies associated with cognition, healing, learning, memory and other key brain functions. An abstract of the study — which was presented in the nutrition section of the Experimental Biology 2017 meetings in San Diego, California, and published in the FASEB Journal.

    In the study titled “Nuts and brain: Effects of eating nuts on changing electroencephalograph brainwaves,” researchers found that some nuts stimulated some brain frequencies more than others. Pistachios, for instance, produced the greatest gamma wave response, which is critical for enhancing cognitive processing, information retention, learning, perception and rapid eye movement during sleep. Peanuts, which are actually legumes, but were still part of the study, produced the highest delta response, which is associated with healthy immunity, natural healing, and deep sleep.

    The study’s principal investigator, Lee Berk, DrPH, MPH, associate dean for research at the LLU School of Allied Health Professions, said that while researchers found variances between the six nut varieties tested, all of them were high in beneficial antioxidants, with walnuts containing the highest antioxidant concentrations of all.

    Prior studies have demonstrated that nuts benefit the body in several significant ways: protecting the heart, fighting cancer, reducing inflammation and slowing the aging process. But Berk said he believes too little research has focused on how they affect the brain.

    “This study provides significant beneficial findings by demonstrating that nuts are as good for your brain as they are for the rest of your body,” Berk said, adding that he expects future studies will reveal that they make other contributions to the brain and nervous system as well.

    Berk — who is best known for four decades of research into the health benefits of happiness and laughter, as well as a cluster of recent studies on the antioxidants in dark chocolate — assembled a team of 13 researchers to explore the effects of regular nut consumption on brainwave activity.

    The team developed a pilot study using consenting subjects who consumed almonds, cashews, peanuts, pecans, pistachios and walnuts. Electroencephalograms (EEG) were taken to measure the strength of brainwave signals. EEG wave band activity was then recorded from nine regions of the scalp associated with cerebral cortical function.


  4. Study looks at how both nature and nurture may be influencing eating behavior in young children

    October 16, 2017 by Ashley

    From the University of Illinois College of Agricultural, Consumer and Environmental Sciences press release:

    For most preschool-age children, picky eating is just a normal part of growing up. But for others, behaviors such as insisting on only eating their favorite food item — think chicken nuggets at every meal — or refusing to try something new might lead to the risk of being over- or underweight, gastrointestinal distress, or other eating disorders later in childhood.

    Parents and other caregivers often deem children as being “picky eaters” for a variety of reasons, but there is not a hard-fast definition in place for research. Nutrition and family studies researchers at the University of Illinois have collaborated for the last 10 years to understand the characteristics of picky eaters and to identify possible correlations of the behavior.

    In a new study, the researchers wanted to see if chemosensory genes might have a possible relationship to picky eating behavior in young children. They found that certain genes related to taste perception may be behind some of these picky eating habits.

    “For most children, picky eating is a normal part of development,” says Natasha Cole, a doctoral student in the Division of Nutritional Sciences at U of I and lead author of the study. “But for some children, the behavior is more worrisome.” Cole, also part of the Illinois Transdisciplinary Obesity Prevention Program at U of I, hopes the research can help identify the determinants of picky eating behavior in early childhood.

    Leading up to the taste perception genes study, the U of I researchers identified common characteristics of picky eaters, ages 2 to 4 years, and divided these “types” of picky eaters into distinct groups. Further research from the team looked at how parenting styles may affect picky eating behavior and whether children exhibit picky eating behavior both at home and in childcare — homecare or center-based — situations.

    “This has kind of been an evolution of the research, seeing an interaction rather than just seeing the child as on its own, which, when we first started trying to define a picky eater, we were just looking at the child,” explains Soo-Yeun Lee, a professor in the Department of Food Science and Human Nutrition at U of I. “As we were moving into different parts of the research we realized, it’s not just the child, it’s the caregiver and the environment, as well.”

    Now, they are looking at the influence of “nature and nurture” on a child’s picky eating behavior.

    “Natasha is actually taking a deeper look at the child and genetic predisposition,” Lee says. “She is looking at sensory taste genes and also at some of the behavioral genes that have been highlighted in the literature. She has been looking at the whole field of picky eating research, and classifying it based on ‘nature vs. nurture.’ Nature is the genetic disposition and nurture is the environment and the caregivers.”

    The idea, Lee explains, is based on an orchid/dandelion hypothesis. “There are some genes — the behavioral genes — that make the child more prone and more sensitive to being more behaviorally problematic when external influences are present that may not work out their way. That’s the orchid concept. This may be a sensitive child who may not be as resilient with negative feedback or negative mealtime strategies given by parents, versus a dandelion child who is very robust and resistant to whatever, nurture or not, is given to them.

    “There is that fine line, and it’s not just the nurture, the environment, that’s influencing that, but it’s the child’s susceptibility to the environmental cues as well,” she adds.

    For the study, the researchers collected information about breastfeeding history and picky eating behaviors, such as limited food variety, food refusals, and struggles for control, for 153 preschoolers, as reported by their caregivers. Saliva samples were also taken for DNA extraction and genotyping.

    The researchers looked at genetic variation in single nucleotide polymorphisms (SNPs, pronounced “snips”) from five candidate genes related to taste perception. Of the five, they found that two had an association with picky eating behaviors in the preschoolers. One (TAS2R38) was associated with limited dietary variety, and the other (CA6) with struggles for control during mealtime.

    Interestingly, both the TAS2R38 and CA6 genes are possibly related to bitter taste perception. So it is not surprising that the children who are genetically “bitter-sensitive” may be more likely to be picky eaters (i.e. turning down Brussel sprouts or broccoli). Other chemosensory factors, such as odor, color, and texture, may affect eating behaviors as well. Further studies are needed to see how children’s food preferences are affected by the look or smell of their food.

    Along with continuing to look at genetic associations with picky eating, Cole is also interested in understanding how picky eating behaviors start even in children before 2 years of age. Most picky eating research has focused on children over 2 years, but eating habits begin to form before then. She and the research team recently published another study that reviews the research literature on picky eating in children younger than 2 years. The study discusses picky eating associations from an ecological model, starting with the child, and moving out to the child’s environment.

    “By two years, children know how to eat and have pretty set habits,” Cole says. “There is a huge gap in the research when children transition from a milk-based diet to foods that the rest of the family eats.”

    Cole adds that the research involving children under 2 years shows that 22 percent of those children are perceived as picky eaters by their parents or caregivers. Surprisingly, she also found that each additional month of the child’s age was associated with an increase in food-related fussiness. “So a child could go from rarely being a picky eater to being a frequent picky eater in less than a year,” she says.

    Collecting and integrating this comprehensive information from “Cell to Society” is critical to better understand nature-nurture interactions, as many questions in this area remain unsolved, explains Margarita Teran-Garcia, an assistant professor in nutritional sciences, human development and family studies, and the Carle Illinois College of Medicine at the U of I, and co-author of the paper.


  5. Study suggests link between BMI and how we assess food

    October 2, 2017 by Ashley

    From the Scuola Internazionale Superiore di Studi Avanzati press release:

    A new study demonstrated that people of normal weight tend to associate natural foods such as apples with their sensory characteristics. On the other hand, processed foods such as pizzas are generally associated with their function or the context in which they are eaten.

    “It can be considered an instance of ‘embodiment‘ in which our brain interacts with our body.” This is the comment made by Raffaella Rumiati, neuroscientist at the International School for Advanced Studies — SISSA in Trieste, on the results of research carried out by her group which reveals that the way we process different foods changes in accordance with our body mass index. With two behavioural and electroencephalographic experiments, the study demonstrated that people of normal weight tend to associate natural foods such as apples with their sensory characteristics such as sweetness or softness.

    On the other hand, processed foods such as pizzas are generally associated with their function or the context in which they are eaten such as parties or picnics.

    “The results are in line with the theory according to which sensory characteristics and the functions of items are processed differently by the brain,” comments Giulio Pergola, the work’s primary author. “They represent an important step forward in our understanding of the mechanisms at the basis of the assessments we make of food.” But that’s not all.

    Recently published in the Biological Psychology journal, the research also highlighted the ways in which underweight people pay greater attention to natural foods and overweight people to processed foods. Even when subjected to the same stimuli, these two groups show different electroencephalography signals. These results show once again the importance of cognitive neuroscience also in the understanding of extremely topical clinical fields such as dietary disorders.

     


  6. Nutrition has benefits for brain network organization

    September 20, 2017 by Ashley

    From the University of Illinois at Urbana-Champaign press release:

    Nutrition has been linked to cognitive performance, but researchers have not pinpointed what underlies the connection. A new study by University of Illinois researchers found that monounsaturated fatty acids — a class of nutrients found in olive oils, nuts and avocados — are linked to general intelligence, and that this relationship is driven by the correlation between MUFAs and the organization of the brain’s attention network.

    The study of 99 healthy older adults, recruited through Carle Foundation Hospital in Urbana, compared patterns of fatty acid nutrients found in blood samples, functional MRI data that measured the efficiency of brain networks, and results of a general intelligence test. The study was published in the journal NeuroImage.

    “Our goal is to understand how nutrition might be used to support cognitive performance and to study the ways in which nutrition may influence the functional organization of the human brain,” said study leader Aron Barbey, a professor of psychology. “This is important because if we want to develop nutritional interventions that are effective at enhancing cognitive performance, we need to understand the ways that these nutrients influence brain function.”

    “In this study, we examined the relationship between groups of fatty acids and brain networks that underlie general intelligence. In doing so, we sought to understand if brain network organization mediated the relationship between fatty acids and general intelligence,” said Marta Zamroziewicz, a recent Ph.D. graduate of the neuroscience program at Illinois and lead author of the study.

    Studies suggesting cognitive benefits of the Mediterranean diet, which is rich in MUFAs, inspired the researchers to focus on this group of fatty acids. They examined nutrients in participants’ blood and found that the fatty acids clustered into two patterns: saturated fatty acids and MUFAs.

    “Historically, the approach has been to focus on individual nutrients. But we know that dietary intake doesn’t depend on any one specific nutrient; rather, it reflects broader dietary patterns,” said Barbey, who also is affiliated with the Beckman Institute for Advanced Science and Technology at Illinois.

    The researchers found that general intelligence was associated with the brain’s dorsal attention network, which plays a central role in attention-demanding tasks and everyday problem solving. In particular, the researchers found that general intelligence was associated with how efficiently the dorsal attention network is functionally organized used a measure called small-world propensity, which describes how well the neural network is connected within locally clustered regions as well as across globally integrated systems.

    In turn, they found that those with higher levels of MUFAs in their blood had greater small-world propensity in their dorsal attention network. Taken together with an observed correlation between higher levels of MUFAs and greater general intelligence, these findings suggest a pathway by which MUFAs affect cognition.

    “Our findings provide novel evidence that MUFAs are related to a very specific brain network, the dorsal attentional network, and how optimal this network is functionally organized,” Barbey said. “Our results suggest that if we want to understand the relationship between MUFAs and general intelligence, we need to take the dorsal attention network into account. It’s part of the underlying mechanism that contributes to their relationship.”

    Barbey hopes these findings will guide further research into how nutrition affects cognition and intelligence. In particular, the next step is to run an interventional study over time to see whether long-term MUFA intake influences brain network organization and intelligence.

    “Our ability to relate those beneficial cognitive effects to specific properties of brain networks is exciting,” Barbey said. “This gives us evidence of the mechanisms by which nutrition affects intelligence and motivates promising new directions for future research in nutritional cognitive neuroscience.”


  7. Study suggests you are what you think you eat

    by Ashley

    From the British Psychological Society (BPS) press release:

    Despite eating the same breakfast, made from the same ingredients, people consumed more calories throughout the day when they believed that one of the breakfasts was less substantial than the other.

    The research, funded by the Rural and Environment Science and Analytical Services at the Rowett Institute, is the key finding of research led by Steven Brown from Sheffield Hallam University which is being presented today at the annual conference of the British Psychological Society’s Division of Health Psychology.

    Previous studies have investigated the link between how filling we expect liquids (e.g. drinks) or semi-solids (e.g. smoothies/soups) to be and people’s subsequent feelings of hunger up to three hours later.

    These initial expectations have also been shown to be an important determinant of how much people eat at a meal provided a short time later. The current research shows that a similar effect can be seen when using solid foods (i.e. an omelette) and that the influence of those expectations is still present after a longer period of time (four hours later and the total day’s calorific intake).

    A total of 26 participants took part. Over two visits, participants believed they were eating either a two or four egg omelette for breakfast. However, both of the omelettes actually contained three eggs.

    When the participants believed that the omelette was smaller they reported themselves to be significantly hungrier after two hours, they consumed significantly more of a pasta lunch and, in total, consumed significantly more calories throughout the day than when the same participants believed that they were eating a larger omelette.

    Steven Brown said, “Previous studies have shown that a person’s expectations can have an impact on their subsequent feelings of hunger and fullness and, to a degree, their later calorie consumption. Our work builds on this with the introduction of solid food and measured people’s subsequent consumption four hours later, a period of time more indicative of the gap between breakfast and lunch.

    “We were also able to measure participants’ consumption throughout the rest of the day and found that total intake was lower when participants believed that they had eaten a larger breakfast.

    “As part of the study, we were able to take blood samples from participants throughout their visits. Having analysed levels of ghrelin, a known hunger hormone, our data also suggest that changes in reported hunger and the differences in later consumption are not due to a differences in participants’ physical response to the food.

    Therefore, memory for prior consumption, as opposed to physiological factors, may be a better target for investigating why expectations for a meal have an effect on subsequent feelings of hunger and calorie intake.”


  8. Study finds active ingredient in sugarcane may help with stress-related insomnia

    September 18, 2017 by Ashley

    From the University of Tsukuba press release:

    Everyone empirically knows that stressful events certainly affect sound sleep. Scientists in the Japanese sleep institute found that the active component rich in sugarcane and other natural products may ameliorate stress and help having sound sleep.

    In today’s world ever-changing environment, demanding job works and socio-economic factors enforces sleep deprivation in human population. Sleep deprivation induces tremendous amount of stress, and stress itself is one of the major factors responsible for sleep loss or difficulty in falling into sleep. Currently available sleeping pills does not address stress component and often have severe side effects. Sleep loss is also associated with certain other diseases including obesity, cardiovascular diseases, depression, anxiety, mania deficits etc.

    The research group led by Mahesh K. Kaushik and Yoshihiro Urade of the International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, found that octacosanol reduces stress and restores stress-affected sleep back to normal.

    Octacosanol is abundantly present in various everyday foods such as sugarcane (thin whitish layer on surface), rice bran, wheat germ oil, bee wax etc. The crude extract is policosanol, where octacosanol is the major constituent. Policosanol and octacosanol have already been used in humans for various other medical conditions.

    In the current study, authors made an advancement and investigated the effect of octacosanol on sleep regulation in mildly stressed mice by oral administration. Octacosanol reduced corticosterone level in blood plasma, which is a stress marker. The octacosanol-administered mice also showed normal sleep, which was previously disturbed due to stress. They therefore claim that the octacosanol mitigates stress in mice and restores stress-affected sleep to normal in mice. The sleep induced by octacosanol was similar to natural sleep and physiological in nature. However, authors also claimed that octacosanol does not affect sleep in normal animals. These results clearly demonstrated that octacosanol is an active compound that has potential to reduce stress and to increase sleep, and it could potentially be useful for the therapy of insomnia caused by stress. Octacosanol can be considered safe for human use as a therapy, because it is a food-based compound and believed to show no side effects.

    Octacosanol/policosanol supplements are used by humans for functions such as lipid metabolism, cholesterol lowering or to provide strength. However, well-planned clinical studies need to be carried out to confirm its effect on humans for its stress-mitigation and sleep-inducing potentials. “Future studies include the identification of target brain area of octacosanol, its BBB permeability, and the mechanism via which octacosanol lowers stress,” Kaushik says.


  9. Nutrition has benefits for brain network organization

    September 15, 2017 by Ashley

    From the University of Illinois at Urbana-Champaign press release:

    Nutrition has been linked to cognitive performance, but researchers have not pinpointed what underlies the connection. A new study by University of Illinois researchers found that monounsaturated fatty acids — a class of nutrients found in olive oils, nuts and avocados — are linked to general intelligence, and that this relationship is driven by the correlation between MUFAs and the organization of the brain’s attention network.

    The study of 99 healthy older adults, recruited through Carle Foundation Hospital in Urbana, compared patterns of fatty acid nutrients found in blood samples, functional MRI data that measured the efficiency of brain networks, and results of a general intelligence test. The study was published in the journal NeuroImage.

    “Our goal is to understand how nutrition might be used to support cognitive performance and to study the ways in which nutrition may influence the functional organization of the human brain,” said study leader Aron Barbey, a professor of psychology. “This is important because if we want to develop nutritional interventions that are effective at enhancing cognitive performance, we need to understand the ways that these nutrients influence brain function.”

    “In this study, we examined the relationship between groups of fatty acids and brain networks that underlie general intelligence. In doing so, we sought to understand if brain network organization mediated the relationship between fatty acids and general intelligence,” said Marta Zamroziewicz, a recent Ph.D. graduate of the neuroscience program at Illinois and lead author of the study.

    Studies suggesting cognitive benefits of the Mediterranean diet, which is rich in MUFAs, inspired the researchers to focus on this group of fatty acids. They examined nutrients in participants’ blood and found that the fatty acids clustered into two patterns: saturated fatty acids and MUFAs.

    “Historically, the approach has been to focus on individual nutrients. But we know that dietary intake doesn’t depend on any one specific nutrient; rather, it reflects broader dietary patterns,” said Barbey, who also is affiliated with the Beckman Institute for Advanced Science and Technology at Illinois.

    The researchers found that general intelligence was associated with the brain’s dorsal attention network, which plays a central role in attention-demanding tasks and everyday problem solving. In particular, the researchers found that general intelligence was associated with how efficiently the dorsal attention network is functionally organized used a measure called small-world propensity, which describes how well the neural network is connected within locally clustered regions as well as across globally integrated systems.

    In turn, they found that those with higher levels of MUFAs in their blood had greater small-world propensity in their dorsal attention network. Taken together with an observed correlation between higher levels of MUFAs and greater general intelligence, these findings suggest a pathway by which MUFAs affect cognition.

    “Our findings provide novel evidence that MUFAs are related to a very specific brain network, the dorsal attentional network, and how optimal this network is functionally organized,” Barbey said. “Our results suggest that if we want to understand the relationship between MUFAs and general intelligence, we need to take the dorsal attention network into account. It’s part of the underlying mechanism that contributes to their relationship.”

    Barbey hopes these findings will guide further research into how nutrition affects cognition and intelligence. In particular, the next step is to run an interventional study over time to see whether long-term MUFA intake influences brain network organization and intelligence.

    “Our ability to relate those beneficial cognitive effects to specific properties of brain networks is exciting,” Barbey said. “This gives us evidence of the mechanisms by which nutrition affects intelligence and motivates promising new directions for future research in nutritional cognitive neuroscience.”


  10. Lutein, found in leafy greens, may counter cognitive aging

    August 19, 2017 by Ashley

    From the University of Illinois at Urbana-Champaign press release:

    Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

    The study, which included 60 adults aged 25 to 45, found that middle-aged participants with higher levels of lutein — a nutrient found in green leafy vegetables such as spinach and kale, as well as avocados and eggs — had neural responses that were more on par with younger individuals than with their peers. The findings were published in the journal Frontiers in Aging Neuroscience.

    “Now there’s an additional reason to eat nutrient-rich foods such as green leafy vegetables, eggs and avocados,” said Naiman Khan, a professor of kinesiology and community health at Illinois. “We know these foods are related to other health benefits, but these data indicate that there may be cognitive benefits as well.”

    Most other studies have focused on older adults, after there has already been a period of decline. The Illinois researchers chose to focus on young to middle-aged adults to see whether there was a notable difference between those with higher and lower lutein levels.

    “As people get older, they experience typical decline. However, research has shown that this process can start earlier than expected. You can even start to see some differences in the 30s,” said Anne Walk, a postdoctoral scholar and first author of the paper. “We want to understand how diet impacts cognition throughout the lifespan. If lutein can protect against decline, we should encourage people to consume lutein-rich foods at a point in their lives when it has maximum benefit.”

    Lutein is a nutrient that the body can’t make on its own, so it must be acquired through diet. Lutein accumulates in brain tissues, but also accumulates in the eye, which allows researchers to measure levels without relying on invasive techniques.

    The Illinois researchers measured lutein in the study participants’ eyes by having participants look into a scope and respond to a flickering light. Then, using electrodes on the scalp, the researchers measured neural activity in the brain while the participants performed a task that tested attention.

    “The neuro-electrical signature of older participants with higher levels of lutein looked much more like their younger counterparts than their peers with less lutein,” Walk said. “Lutein appears to have some protective role, since the data suggest that those with more lutein were able to engage more cognitive resources to complete the task.”

    Next, Khan’s group is running intervention trials, aiming to understand how increased dietary consumption of lutein may increase lutein in the eye, and how closely the levels relate to changes in cognitive performance.

    “In this study we focused on attention, but we also would like to understand the effects of lutein on learning and memory. There’s a lot we are very curious about,” Khan said.